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INTRODUCTION

o Status of on-line optimization

o Theoretical evaluation of distribution functions
used in NLP’s

o Numerical results support the theoretical
evaluation

o An optimal procedure for on-line optimization

o Application to a Monsanto contact process 

o Interactive Windows program incorporating these
methods

Mineral Processing Research Institute
 web site

 www.mpri.lsu.edu



On-Line Optimization
Automatically adjust operating conditions
with the plant’s distributed control system

Maintains operations at optimal set points

Requires the solution of three NLP’s
gross error detection and data reconciliation
parameter estimation
economic optimization

BENEFITS

Improves plant profit by 3-5%

Waste generation and energy use are
reduced

Increased understanding of plant
operations
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Some Companies Using On-Line
Optimization

United States Europe
Texaco OMV Deutschland
Amoco Dow Benelux
Conoco Shell
Lyondel OEMV
Sunoco Penex
Phillips Borealis AB
Marathon DSM-Hydrocarbons
Dow
Chevron
Pyrotec/KTI
NOVA Chemicals (Canada)
British Petroleum

Applications  
mainly crude units in refineries and
ethylene plants



Companies Providing On-Line Optimization

Aspen Technology - Aspen Plus On-Line
- DMC Corporation
- Setpoint
- Hyprotech Ltd. 

Simulation Science - ROM
- Shell - Romeo

Profimatics - On-Opt
- Honeywell

Litwin Process Automation - FACS

DOT Products, Inc. - NOVA 



Distributed Control System

Runs control algorithm three times a second

Tags - contain about 20 values for each
measurement, e.g. set point, limits, alarm

Refinery and large chemical plants have 5,000 -
10,000 tags

Data Historian

Stores instantaneous values of measurements for
each tag every five seconds or as specified.

Includes a relational data base for laboratory and
other measurements not from the DCS

Values are stored for one year, and require hundreds
of megabites

Information made available over a LAN in various
forms, e.g. averages, Excel files. 



Plant Problem Size
Contact Alkylation Ethylene

Units 14 76 -

Streams 35 110 ~4,000

Constraints

Equality 761 1579 ~400,000

Inequality 28 50 ~10,000

Variables

Measured 43 125 ~300

Unmeasured  732 1509 ~10,000

Parameters 11 64 ~100



Status of Industrial Practice for On-Line Optimization

Steady state detection by time series screening

Gross error detection by time series screening

Data reconciliation by least squares

Parameter estimation by least squares

Economic optimization by standard methods



Key Elements 

  Gross Error Detection 

  Data Reconciliation

  Parameter Estimation

  Economic Model 
 (Profit Function)

 Plant Model
 (Process Simulation)

Optimization Algorithm



DATA   RECONCILIATION

Adjust process data to satisfy material and
energy balances.

Measurement error - e

e = y - x 

y = measured process variables
x = true values of the measured variables

~x = y + a 

a - measurement adjustment



DATA   RECONCILIATION

measurements having only random errors - least squares

Minimize: eTE -1e = (y - x)TE -1(y - x)
     x

 Subject to: f(x) = 0

E  = variance matrix = {F2
ij}.  

F i =standard deviation of ei.

f(x) - process model
       - linear or nonlinear

Minimize: eTE -1e = (y - x)TE -1(y - x)
     x



DATA   RECONCILIATION

Linear Constraint Equations - material balances only

f(x) =  Ax = 0

analytical solution -  ~x = y - EAT(AEAT)-1Ay

Nonlinear Constraint Equations

f(x) includes material and energy balances,
chemical reaction rate equations, thermodynamic
relations 

nonlinear programming problem 

GAMS and a solver, e.g. MINOS



Types of Gross Errors

Source:  S. Narasimhan and C. Jordache, Data Reconciliation and Gross
Error Detection, Gulf Publishing Company, Houston, TX (2000)



Gross Error Detection
Methods
Statistical testing

o  many methods 

 o  can include data reconciliation

Others 

 o Principal Component Analysis

 o Ad Hoc Procedures - Time series 
screening



Combined Gross Error Detection and Data Reconciliation

Measurement Test Method - least squares

Minimize: (y - x)TΣ-1(y - x) = eTΣ-1e
 x, z

 Subject to: f(x, z, θ) = 0

xL # x # xU

zL # z # zU

Test statistic:
      if *ei*/σi  > C measurement contains a gross error

Least squares is based on only random errors being present
Gross errors cause numerical difficulties
Need methods that are not sensitive to gross errors



Methods Insensitive to Gross Errors

Tjao-Biegler’s Contaminated Gaussian
Distribution
 

P(yi * xi) = (1-η)P(yi * xi, R) + η P(yi * xi, G)

P(yi * xi, R) = probability distribution function for the random error
P(yi * xi, G) = probability distribution function for the gross error.
Gross error occur with probability η 

Gross Error Distribution Function
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Tjao-Biegler Method
Maximizing this distribution function of measurement
errors or minimizing the negative logarithm subject to the
constraints in plant model, i.e.,

Minimize:
    x

Subject to: f(x) = 0 plant model
xL # x # xU bounds on the process

variables

A NLP, and values are needed for  0 and b

Test for Gross Errors

 If 0P(yi*xi, G) $ (1-0)P(yi*xi, R), gross error
probability of a  probability of a
gross error random error
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Robust Function Methods

   Minimize: -3 [ D(yi, xi) ]
   x   i

Subject to: f(x) = 0
xL # x # xU  

Lorentzian distribution

Fair function

c is a tuning parameter
Test statistic

,i = (yi - xi )/Fi 
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   Minimize: -3 [ D(yi, xi) ]
   x   i

Subject to: f(x) = 0

Fair function
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Parameter Estimation
Error-in-Variables M ethod

Least squares

M inim ize: (y  - x)TE -1(y  - x) = eTE -1e
     2
Subject to : f(x , 2 ) = 0

2  - plant param eters

Sim ultaneous data reconciliation and param eter
estim ation

M inim ize: (y  - x)TE -1(y  - x) = eTE -1e
    x , 2
Subject to : f(x , 2 ) = 0

another nonlinear programm ing problem

M inim ize: (y  - x)TE -1(y  - x) = eTE -1e
     2

M inim ize: (y  - x)TE -1(y  - x) = eTE -1e
    x , 2



Three Similar Optimization Problems

Optimize: Objective function
Subject to: Constraints are the plant

model

Objective function

data reconciliation - distribution function
parameter estimation - least squares
economic optimization - profit function 

Constraint equations

material and energy balances
chemical reaction rate equations
thermodynamic equilibrium relations
capacities of process units
demand for product
availability of raw materials



Theoretical Evaluation of Algorithms for Data Reconciliation

Determine sensitivity of distribution functions to gross errors

Objective function is the product or sum of distribution functions 
for individual measurement errors

P = ( p(,) % 3 ln p(,) % 3D(,)



Three important concepts in the theoretical 
evaluation of the robustness and precisionof
an estimator from a distribution function

Influence Function

Robustness of an estimator is unbiasedness
(insensitivity) to the presence of gross 
errors in measurements.  The sensitivity of 
an estimator to the presence of gross errors 
can be measured by the influence function 
of the distribution function.  For M-estimate, 
the influence function is defined as a 
function that is proportional to the derivative 
of a distribution function with respect to the 
measured variable, (MD/Mx)



Relative Efficiency

The precision of an estimator from a distribution is measured by
the relative efficiency of the distribution.  The estimator is precise
if the variation (dispersion) of its distribution function is small

Breakdown Point

The break-down point can be thought of as giving the limiting 
fraction of gross errors that can be in a sample of data and a 
valid estimation of the estimator is still obtained using this data.  
For repeated samples, the break-down point is the fraction of 
gross errors in the data that can be tolerated and the estimator
gives a meaningful value. 



Influence Function
proportional to the derivative of the distribution function,  IF % Mρ/Mx

represents the sensitivity of reconciled data to the presence of gross errors

Normal Distribution

Contaminated Gaussian Distribution

Lorentzian Distribution

Fair Function
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Comparison of Influence Functions

Effect of Gross Errors on Reconciled Data - Least to Most

Lorentzian  < Contaminated Gaussian  < Fair   < Normal
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Numerical Evaluation of Algorithms

Simulated plant data is constructed by

y =  x + e + a*

y - simulated measurement vector for measured variables

x - true values (plant design data) for measured variables

e - random errors added to the true values

a - magnitude of a gross error added to one of measured 
variables

* - a vector with one in one element corresponding to the
measured variable with gross error and zero in other elements



Criteria for Numerical Evaluation

Gross error detection rate - ratio of number of gross
errors that are correctly detected to the total number of 
gross errors in measurements

Number of type I errors - If a measurements does not
contain a gross error and the test statistic
identifies the measurement as having a gross
error, it is called a type I error

Random and gross error reduction - the ratio of the
remaining error in the reconciled data to the
error in the measurement 
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Results of Theoretical and Numerical Evaluations

Tjoa-Biegler’s method has the best performance
for measurements containing random errors     

       and moderate gross errors (3F-30F)
   

Robust method using Lorentzian distribution is 
more effective for measurements with very
large gross errors (larger than 30F)

    

Measurement test method gives a more accurate 
estimation for measurements containing only 
random errors.  It gives significantly biased 
estimation when measurements contain gross
errors larger than 10F 
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Economic Optimization
   

Value Added Profit Function

 sF64F64 + sFS8FS8 + sFS14FS14 - cF50F50 - cFS1FS1 - cF65F65

On-Line Optimization Results

Profit
Current Optimal

Date ($/day) ($/day)             Improvement

6-10-97         37,290 38,146               2.3%              
              $313,000/yr

6-12-97         36,988 38,111               3.1%              
             $410,000/yr

Economic Optimization
   



Optimization
algorithm

Combined gross 
error detection and 
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Plant data
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Simultaneous data
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Interactive On-Line Optimization Program

1. Conduct  combined gross error detection and data
reconciliation to detect and rectify gross errors in
plant data sampled from distributed control system
using the Tjoa-Biegler's method (the contaminated
Gaussian distribution) or robust method (Lorentzian
distribution).

This step generates a set of measurements containing
only random errors for parameter estimation.

2. Use this set of measurements for simultaneous
parameter estimation and data reconciliation using
the least squares method.

This step provides the updated parameters in the
plant model for economic optimization.

3. Generate optimal set points for the distributed control
system from the economic optimization using the
updated plant and economic models.



Interactive On-Line Optimization Program

 Process and economic models are entered as
equations in a form similar to Fortran

The program writes and runs three GAMS       
programs.

Results are presented in a summary form, on a
process flowsheet and in the full GAMS output

The program and users manual (120 pages) can
be downloaded from the LSU Minerals
Processing Research Institute web site

URLhttp://www.mpri.lsu.edu







Plant Steady?
No

Parameter Estimation

Economic Optimization 

Plant Steady?

Optimal Setpoints

Selected plant
measurements

No

Selected plant
measurements &
controller limits

Plant Model:
Measurements
Equality constraints

Plant Model:
Equality constraints

Validated measurements

Updated parameters

Plant model
Economic model
Controller limits

Data Validation

Successful solution
No

Successful solution
No

Distributed Control System



Some Other Considerations
Redundancy

Observeability

Variance estimation

Closing the loop

Dynamic data reconciliation
 and parameter estimation



Summary

Most difficult part of on-line optimization is developing and
validating the process and economic models.

Most valuable information obtained from on-line
optimization is a more thorough understanding of the
process
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